Univerza *v Ljubljani*

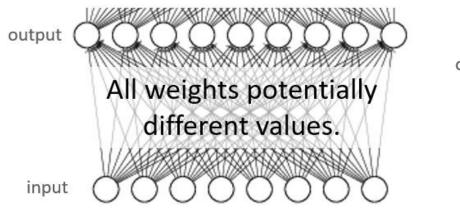
Machine Perception Recognition and detection using local features

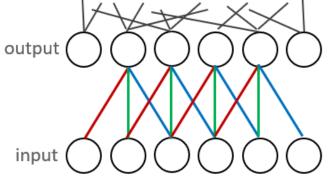
Matej Kristan

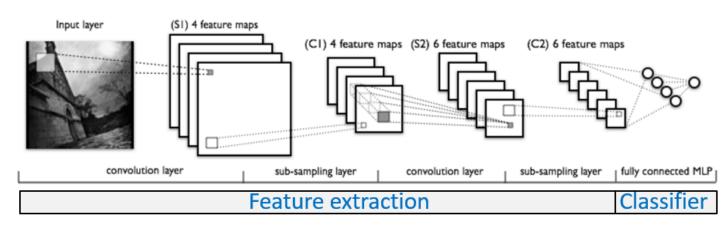
Laboratorij za Umetne Vizualne Spoznavne Sisteme, Fakulteta za računalništvo in informatiko, Univerza v Ljubljani

Previously at MP...

• End-to-end feature learning (CNNs) for recognition, detection, segmentation, ...





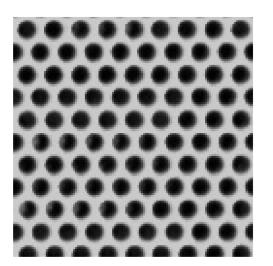


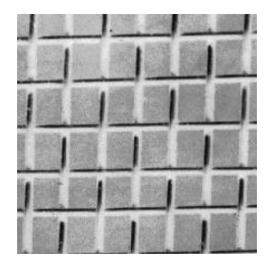
Machine perception

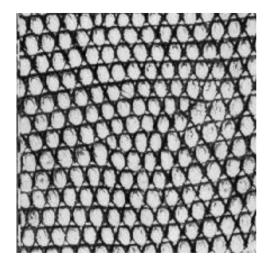
RECOGNITION USING LOCAL FEATURES: *BAG OF WORDS MODELS*

Intuition: texture recognition

- What is texture?
 - Could say: "spatially organized repeatable images"

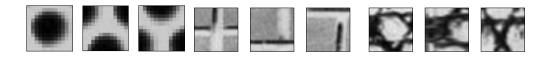




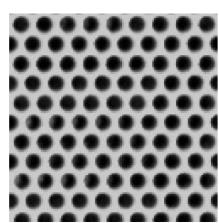


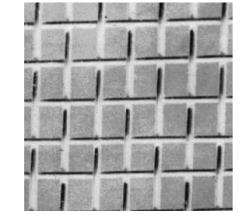
Intuition: texture recognition

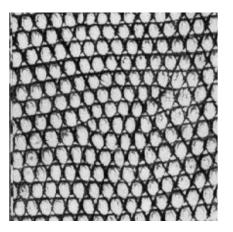
• Texture can be characterized by – textons (small "images")



• For a random texture, the identity of the textons composing it is more important than their arrangement.

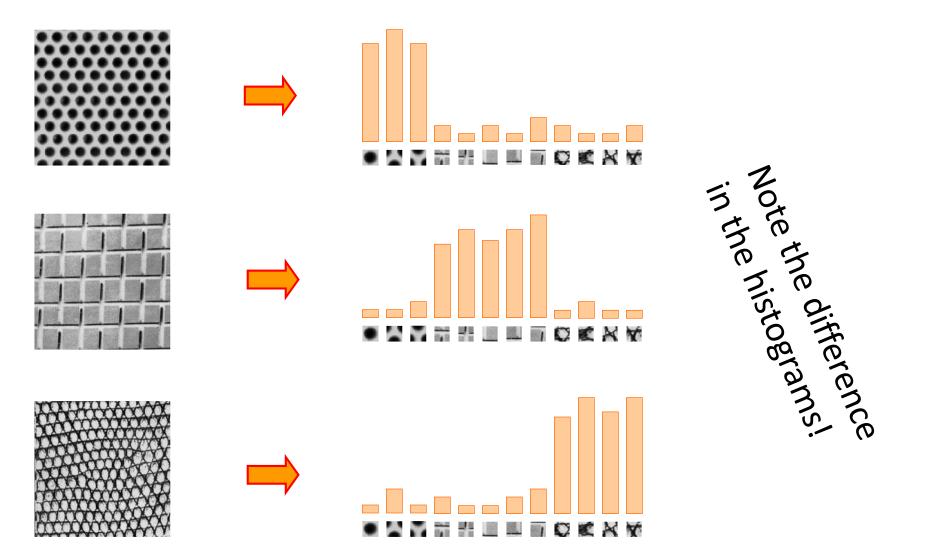






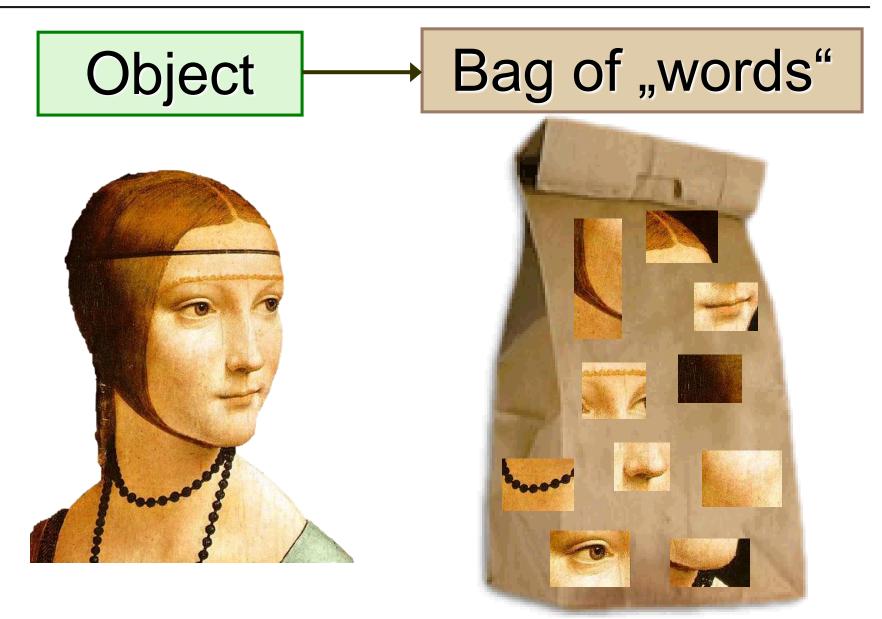
Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Intuition: texture recognition



Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Bag of words models

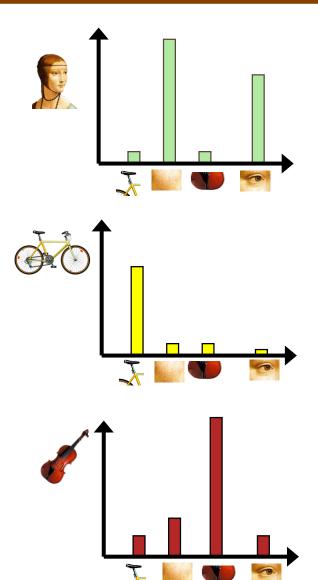


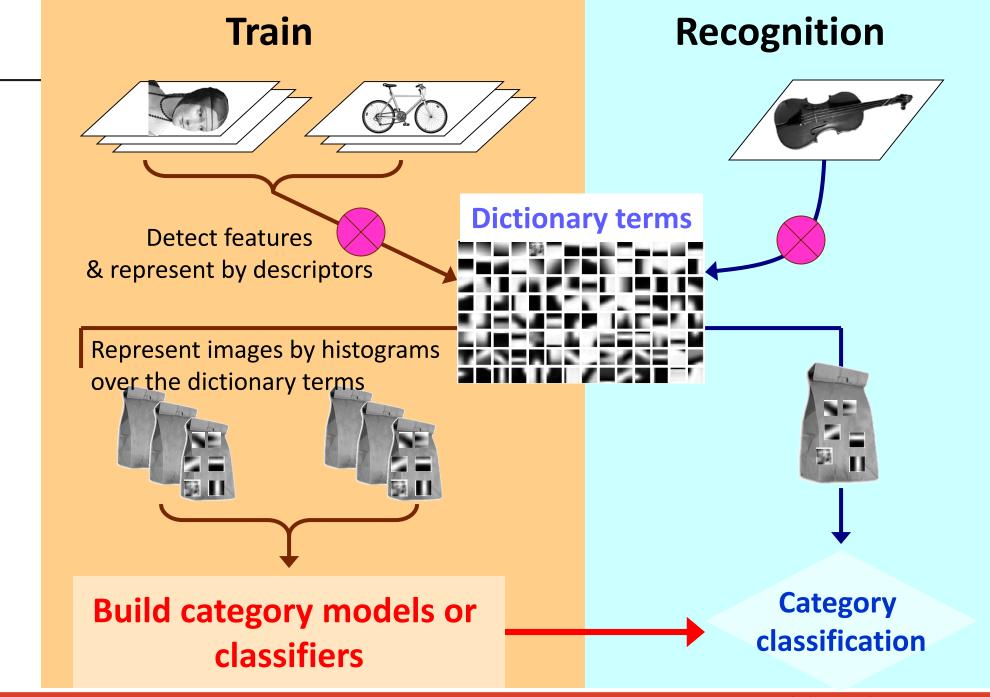
Bag of visual words

• Summarize an image by a distribution (histogram) over visual words.

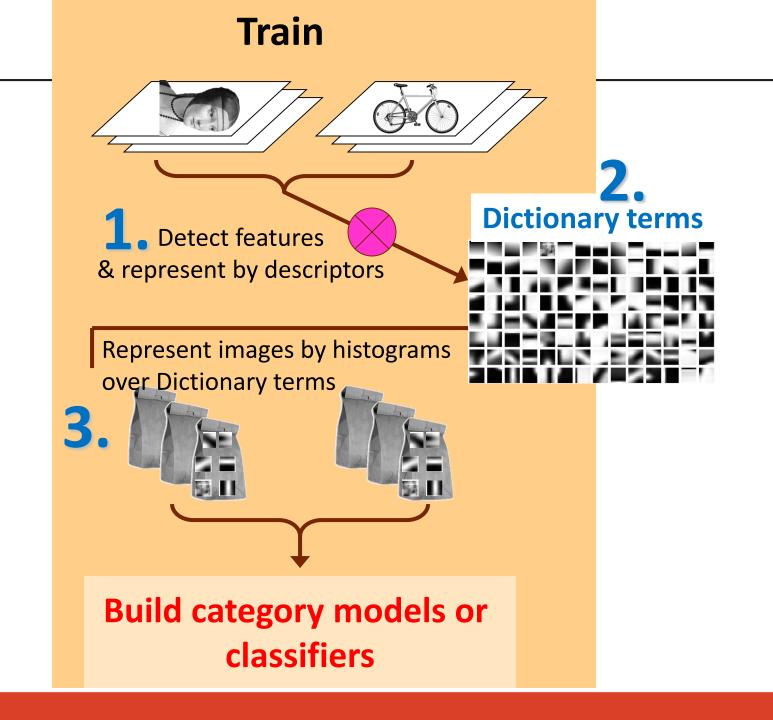
• Analogous to text-based information retrieval systems – think of Google.

• Except: how to identify the "words"?

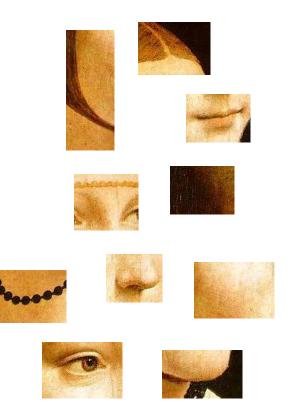




Slide credit: Li Fei-Fei

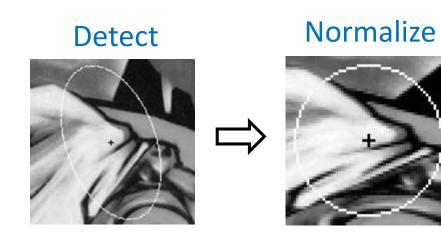


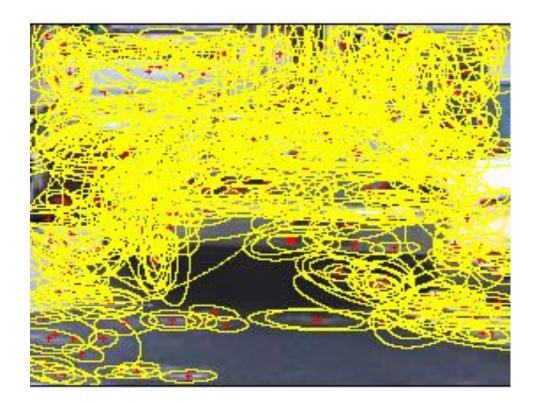
1. Feature detection & representation



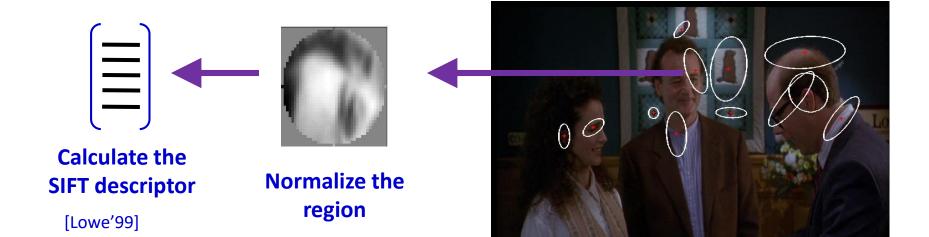
1.0 Feature detection & representation

- Use feature point detectors (we have studied quite a few)
 - E.g., SIFT
- Normalize each region to remove local geometric deformation





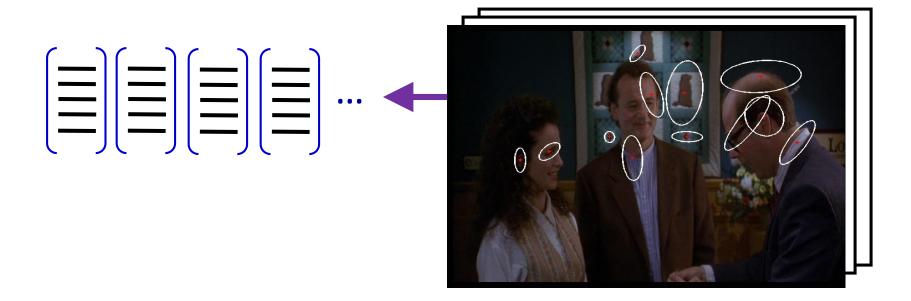
1.1 Feature detection & representation



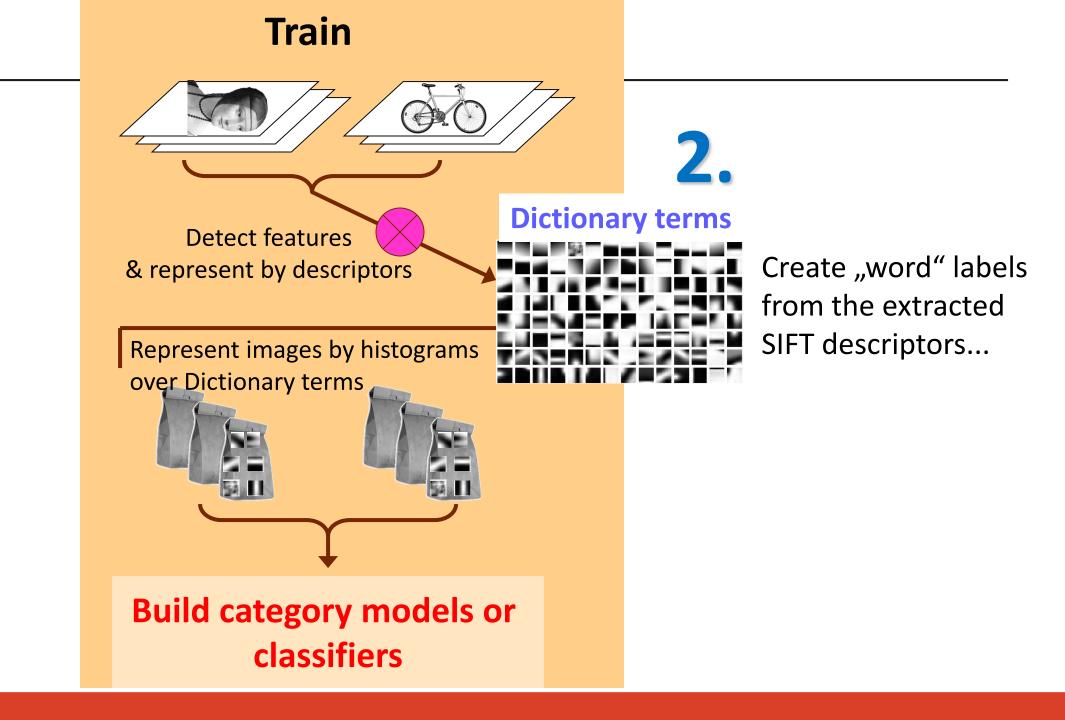
Detect regions

[Mikojaczyk and Schmid '02] [Matas et al. '02] [Sivic et al. '03]

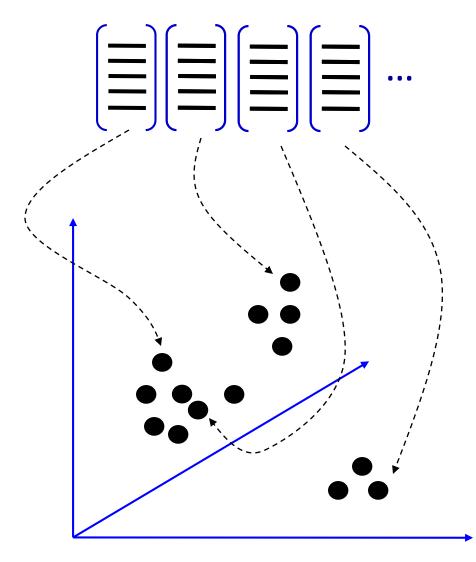
1.2 Feature detection & representation



Collect descriptors from all key-points from all training images.



2. Dictionary construction

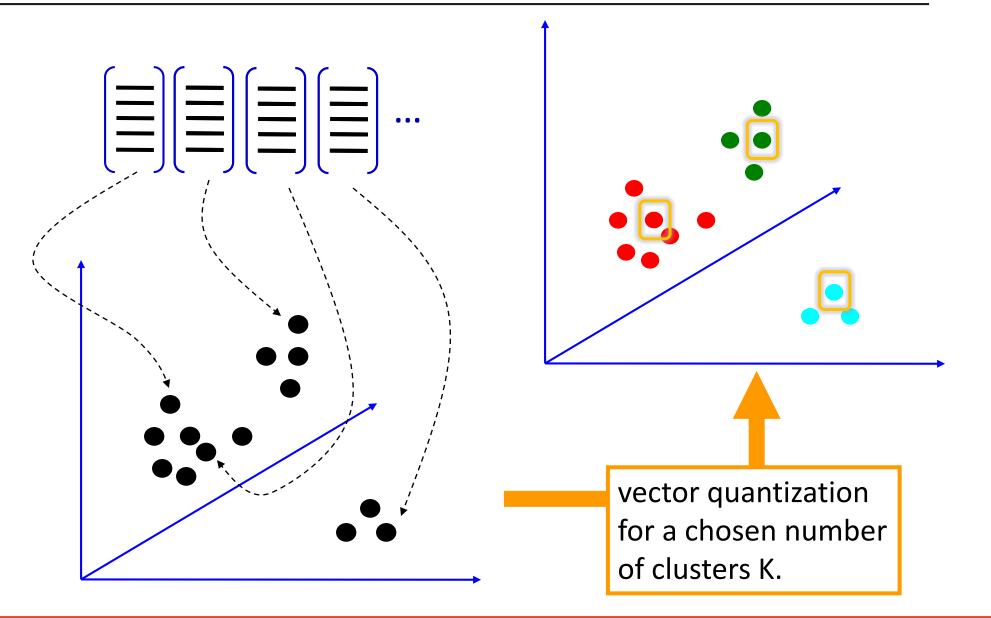


A SIFT descriptor is really a point in a high-dimensional space..

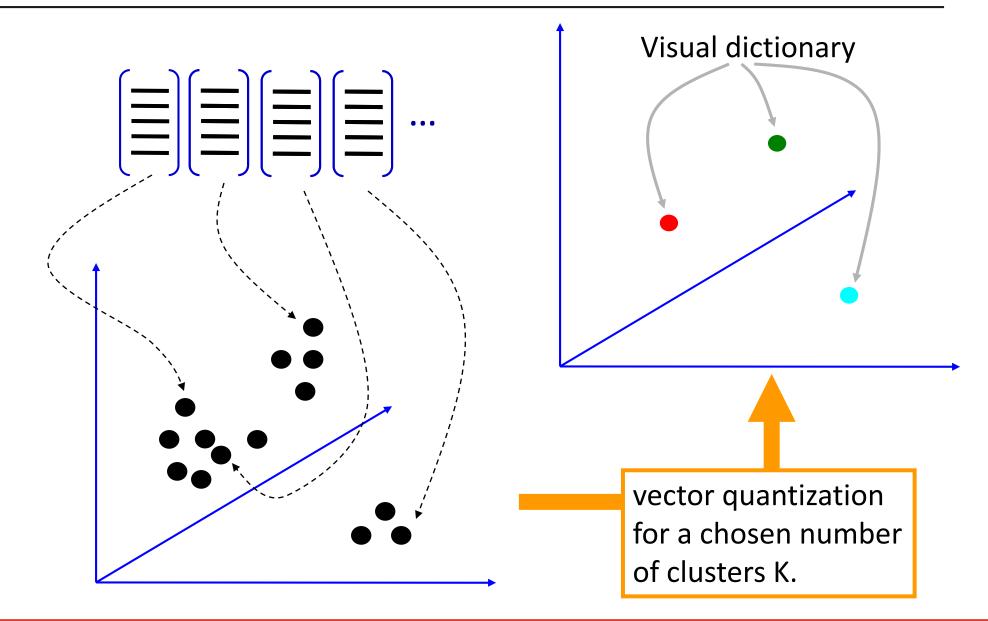
SIFTs corresponding to the same "visual word" should be similar.

Similar SIFTs form clusters!

2. Dictionary construction

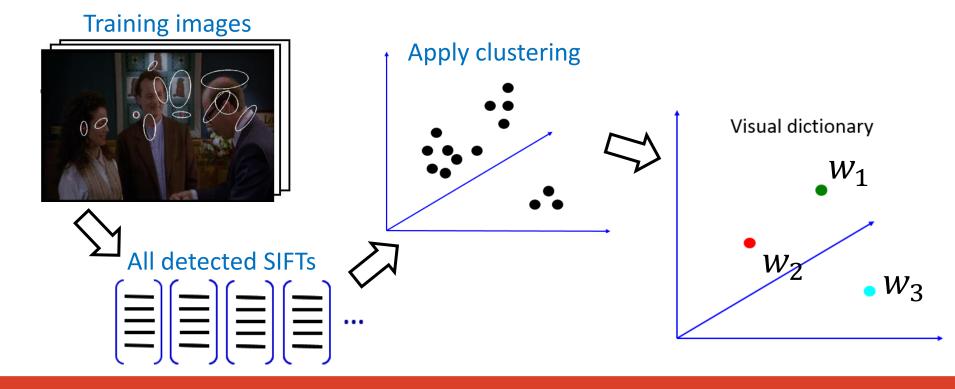


2. Dictionary construction



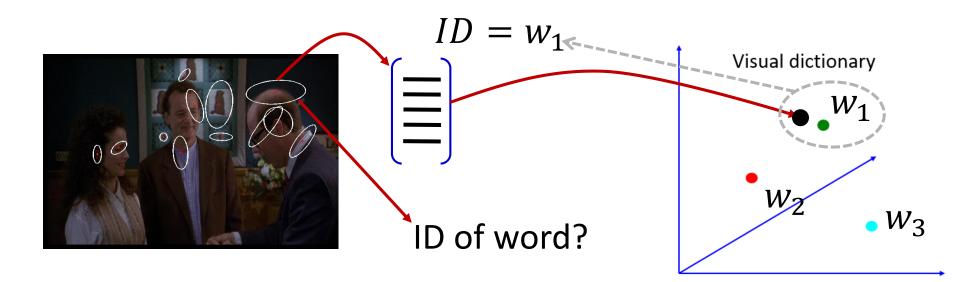
2.1 Clustering by vector quantization

- A standard approach to learning the visual codebook
 - K-means
 - Center of each cluster is the visual word (code vector)
 - Learn the code-book on separate training data (!!! This is learning stage!)



2.1 Clustering by vector quantization

- Apply codebook for feature quantization
 - Takes a feature vector (detected at key-point) and maps it to the index of the closest code vector.
 - Codebook = visual dictionary (vocabulary)
 - Code vector = visual word



2.2 Visual dictionary – example

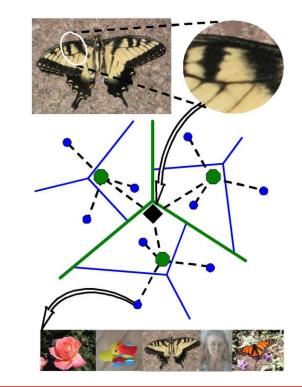
Airplanes	
Motorbikes	
Faces	
Wild Cats	
Leaves	
People	
Bikes	

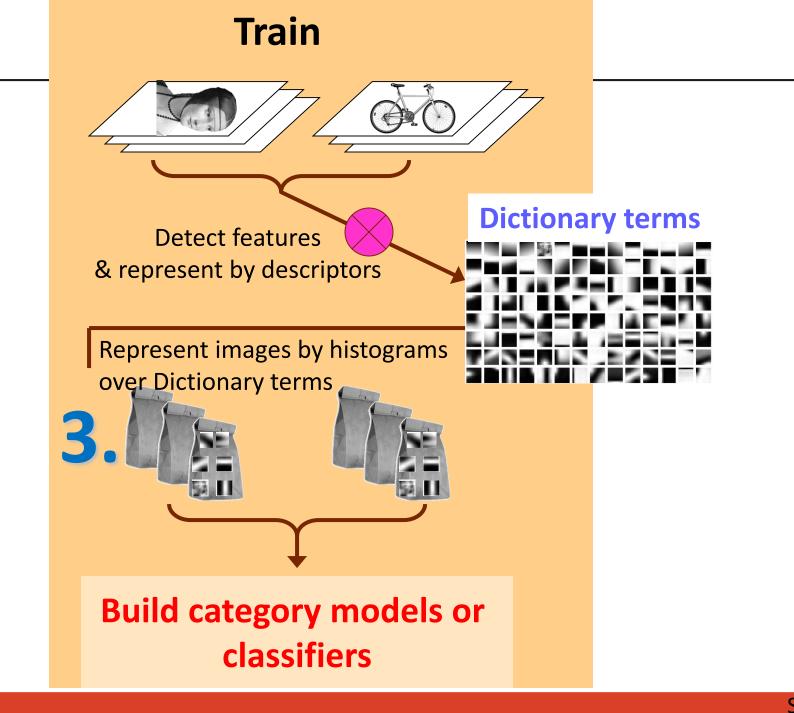
2.2 Visual dictionary – issues

- How to choose dictionary size?
 - Too small: visual words not expressive enough to describe all possible patches.
 - Too large: visual words too similar to discriminate well

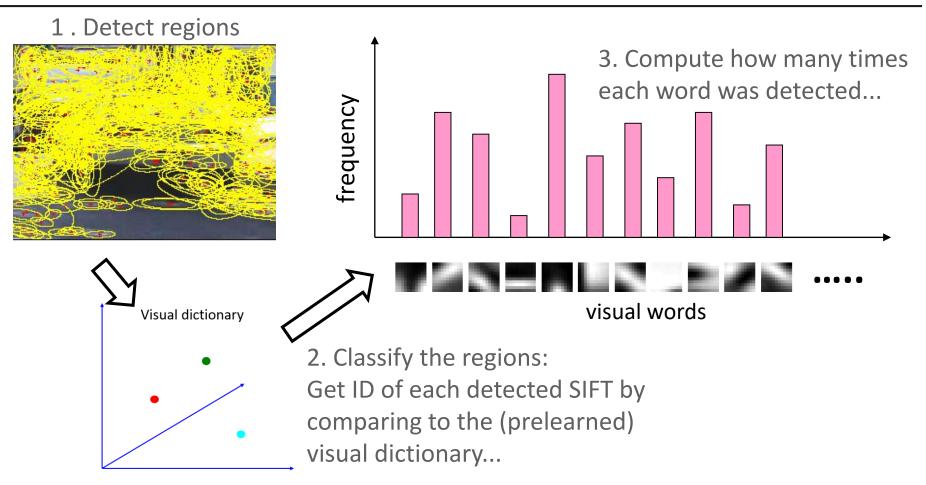
- Computational efficiency in matching (need to compare many keypoints to many visual words in dictionary)
 - Vocabulary trees

D. Nistér and H. Stewénius, *"Scalable recognition with a vocabulary tree,"* in Proc. CVPR, 2006

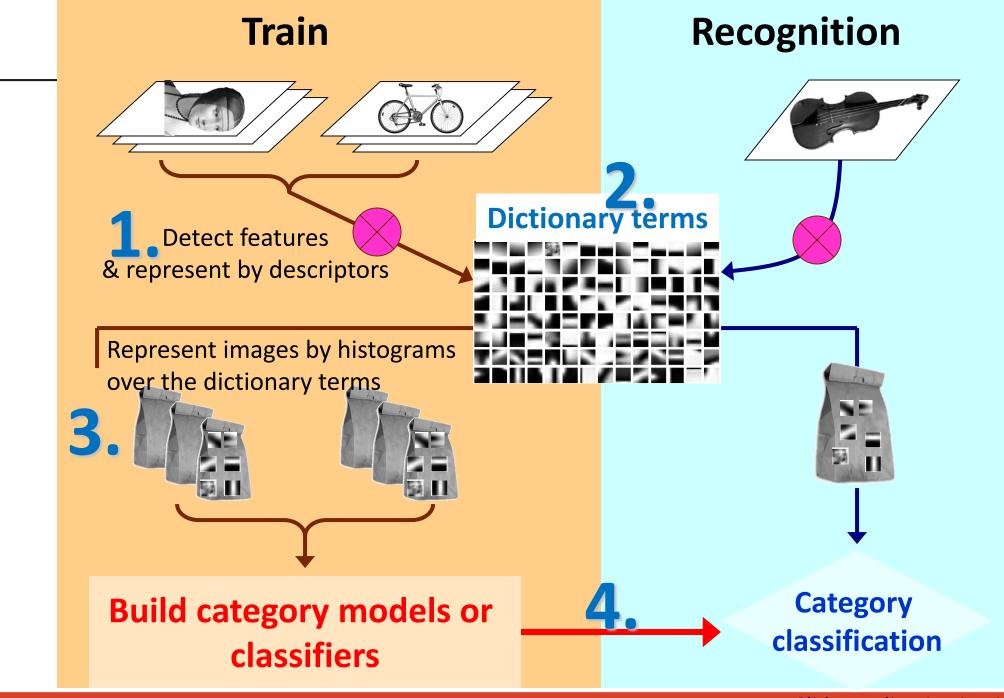




3. Image representation

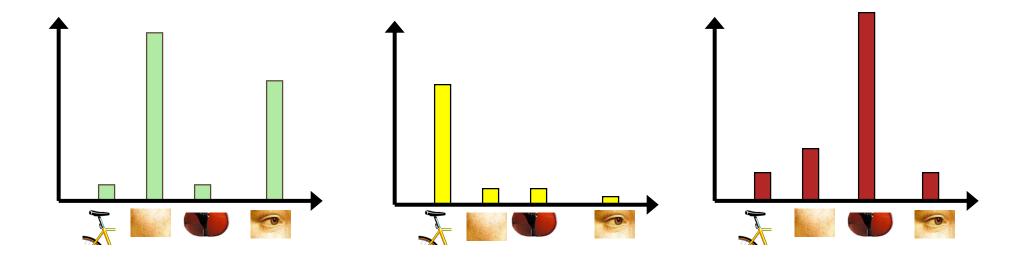


• Each image is represented by a 1000-4000 dimensional histogram, which is then normalized (L1/L2 norm)

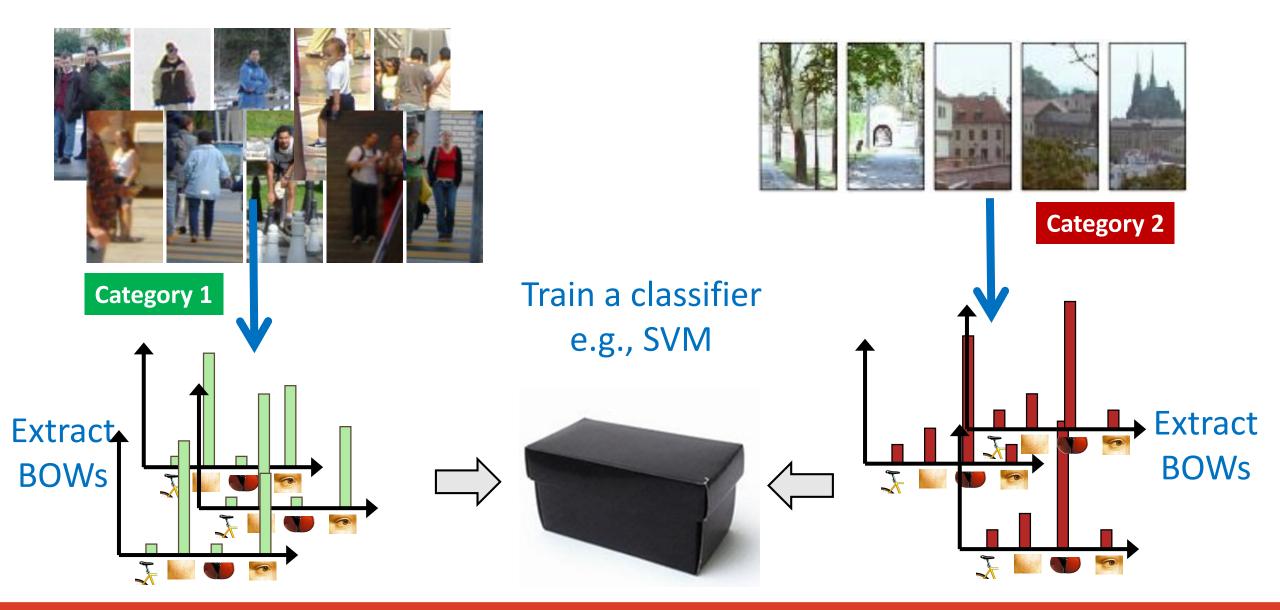


4. Build a classifier

- Using the training set, we have first built a visual vocabulary.
- The vocabulary can be now used to encode any image with the histogram
- As the final stage of learning, we need to train a classifier that will classify images based on the extracted bag of word histograms.



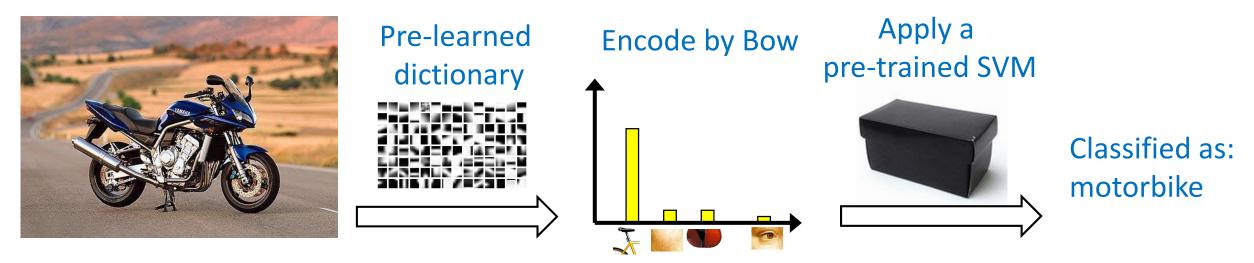
4.1 Build a classifier by SVM



5. Recognition

- How to classify a new image?
- Encode the image with the dictionary learned in the training stage
- Feed to a classifier trained at training stage

New image



6. BoW application in practice

• Performs very well in image classification despite the background clutter...



6.1 Examples of false classification

Books classified as faces and buildings

Buildings classified as faces and trees

Cars classified as buildings and phones

6.2 Bags of words: Summary

- Strengths:
 - Fixed descriptor length.
 - Robust to object position and orientation

- Weaknesses:
 - Does not account for spatial relations among visual words.
 - Does not localize objects in the image.

Machine perception

OBJECT DETECTION BY FEATURE CONSTELLATIONS

Detection as a recognition problem

- How to detect an object in arbitrary pose and estimate that pose?
- Brute force sliding windows not always a good option*.

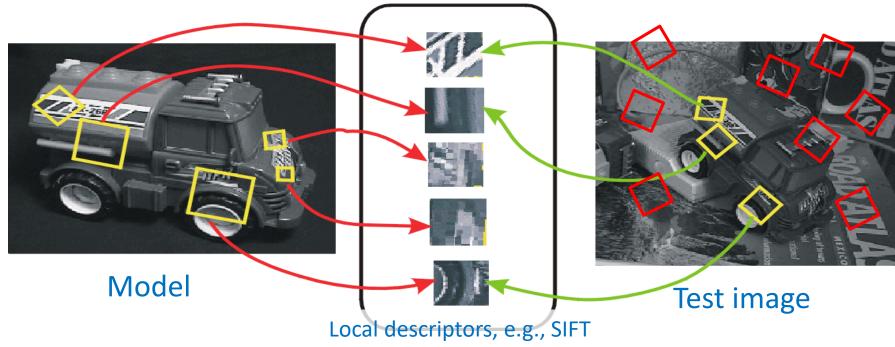
*Actually, modern deep learning detectors can be considered as sliding window operations...

scale

rotation

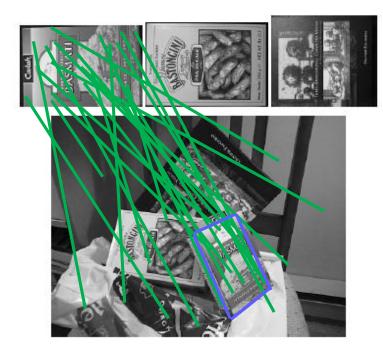
Detection as a recognition problem

- Represent target model in terms of small "parts" that can be detected even under an affine deformation
- Detect "parts" in image (detection should be invariant to rotation and scale)
- Verify consistency of geometric configurations



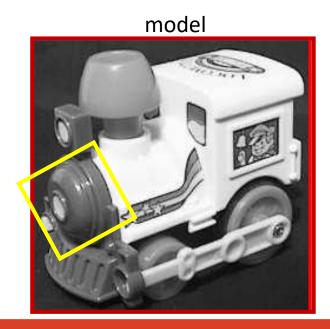
Fitting an affine deformation

- Affine model approximates perspective transform of planar objects.
- Apply RANSAC to get a globally-valid correspondence.



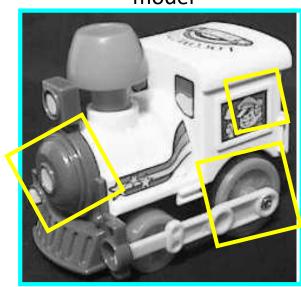
Detection by Generalized Hough Transform

- Assume features are invariant to scale and rotation
 - Then each detected feature becomes a hypothesis of fitting (translation, rotation, scale)
- Each feature casts a vote into the Hough translation/rotation/scale space



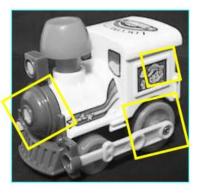
Detection by Generalized Hough Transform

- Assume features are invariant to scale and rotation
 - Then each detected feature becomes a hypothesis of fitting (translation, rotation, scale)
- Each feature casts a vote into the Hough translation/rotation/scale space



model

GHT detection refinement

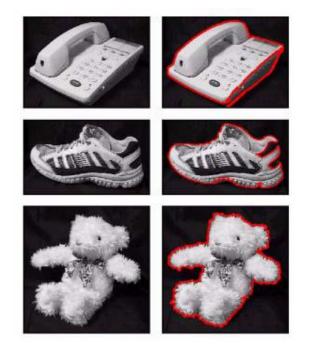


1. Index descriptors

- Distinctive descriptors reduce the search space
- 2. Apply a generalized Hough transform (GHT) to obtain approximate detections
 - Key-points associated with local transformation, relative to coordinate frame of the object.
- **3.** Refine each detection by fitting affine transform between the points on the object and the detected points from HGT
 - Fit and verify using features, which vote for the same cell in the Hough space (at least 3 votes)

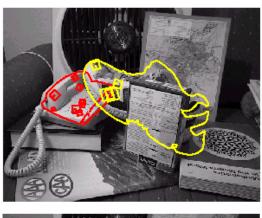
IJCV 2004

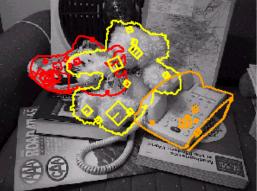
Detection results



Background subtraction to remove background clutter in training phase

Detected objects



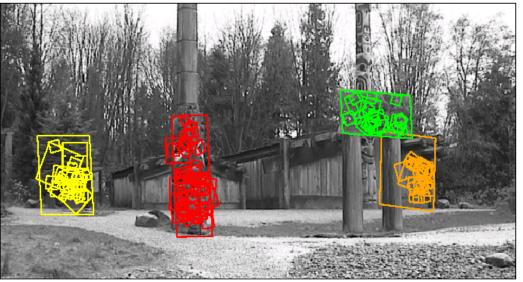


Detection despite partial occlusion

Lowe, <u>"Distinctive image features from scale-invariant keypoints."</u> *IJCV* 2004.

Location recognition

Training examples of a single location



Lowe, <u>"Distinctive image features from scale-invariant keypoints."</u> *IJCV* 2004.

Applications: specific object recognition

 Sony Aibo (Evolution Robotics)

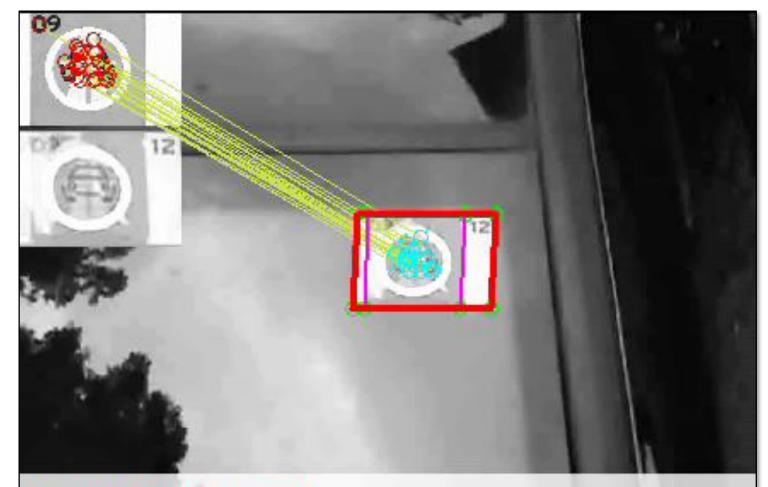
- Application of SIFT
 - Recognition of the charging station
 - Comunication using visual cards

AIBO® Entertainment Robot

Official U.S. Resources and Online Destinations

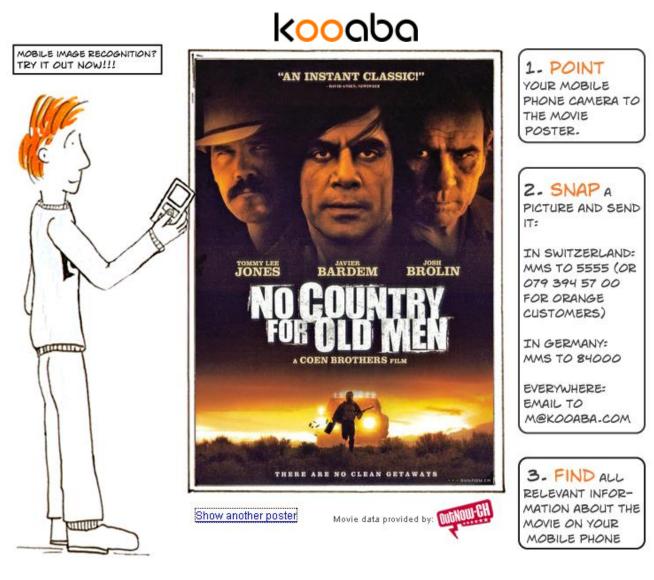
Applications: Highway vignette verification

Highway checkpoint



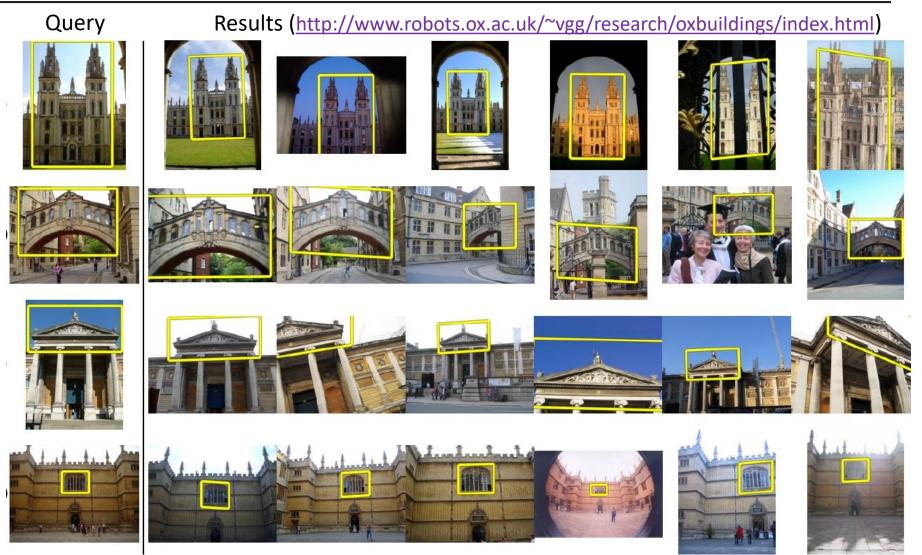
Matej Kristan (2009), Machine Vision Group, University of Ljubljana

Applications: specific object recognition



http://www.kooaba.com

Applications: retrieval systems



Interesting work in retrieval: Radenovic, Tolias, and Chum: <u>CNN Image Retrieval Learns from BoW:</u> <u>Unsupervised Fine-Tuning with Hard Examples</u>, ECCV 2016

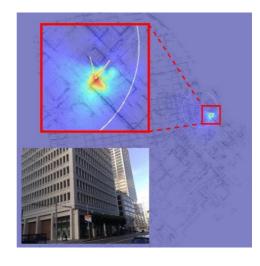
Philbin et al.,. Object retrieval with large vocabularies and fast spatial matching CVPR2007

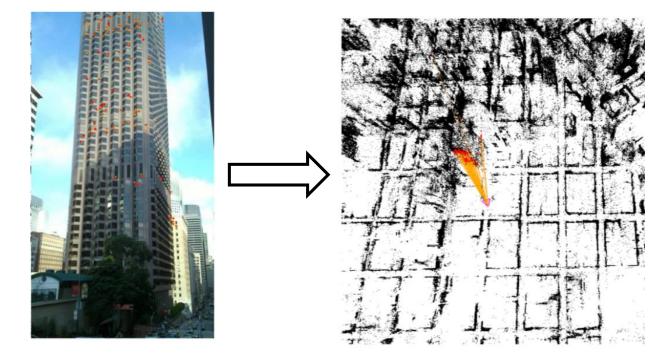
Applications: Augmented reality

- Match flat template keypoints to the scene keypoints
- Estimate camera position
- Project 3D graphic into image

Application: Large-scale pose estimation

- Use a large set of pre-recorded gps-positioned images of a city as training set (e.g., Google street-view).
- From a single image predict camera pose in the city.





Stattler et al., Hyperpoints and Fine Vocabularies for Large-Scale Location Recognition, ICCV2015 Zeisl et al., Camera Pose Voting for Large-Scale Image-Based Localization, ICCV2015

References

- <u>David A. Forsyth</u>, <u>Jean Ponce</u>, Computer Vision: A Modern Approach (2nd Edition), (<u>prva izdaja</u> <u>dostopna na spletu</u>)
- <u>Li Fei-Fei</u> (Stanford), <u>Rob Fergus</u> (NYU), <u>Antonio Torralba</u> (MIT), Recognizing and Learning Object Categories, (<u>na spletu</u>)
- Cordelia Schmid, Bag-of-features for category classification, lecture
- Lazebnik, Schmid, Ponce, <u>Beyond Bags of Features: Spatial Pyramid Matching for Recognizing</u> <u>Natural Scene Categories</u>, CVPR, 2006
- Lowe, <u>"Distinctive image features from scale-invariant keypoints.</u>" *IJCV* 2004

Machine perception

SUMMARY AND OUTLOOK

What did we learn?

- (1,2) Basic image processing
 - Thresholding, Morphology, Region descriptors
 - Linear/nonlinear filter convolution, Image pyramids.
- (3) Edge detection and image gradients
 - Image derivatives, Canny edge detector, Hough transform
- (4) Fitting models
 - Least-squares fitting (iterative, robust), Normal equations, Homogenous systems, RANSAC
- (5) Key-points and correspondences between images
 - Key-point detection in scale-space, local descriptors, SIFT

What did we learn?

- (6,7) Cameras and stereo systems
 - Pinhole camera model, Calibration, Epipolar geometry, Dense correspondence, Triangulation, Active stereo
- (8a-d) Feature learning for recognition and detection:
 - Natural linear coordinate systems: PCA, LDA (face recognition)
 - Nonlinear hand-crafted transforms: HoG+SVM (pedestrian detection)
 - Feature selection: Adaboost+integral images (face detection)
 - End-to-end feature & classifier learning: Convolutional neural nets (CNNs)

What did we learn?

- (9) Key-point-based recognition
 - Bag-of-words models.
 - Detection/recognition by RANSAC and Generalized Hough transform.

The Next Big Thing on Your List...

- The written exam Technical details first
- COVID → online form the safest and most fair
- Outline (see <u>e-classroom</u> for details):
 - Zoom channel on your phone (mike&cam on, speakers muted)
 - SEB installed on your computer
 - Exam will start at the given hour SHARP!
 - You'll be ID-ed *during the exam at random*.
 - Answers written in online form, and at the end you take photos of your sketches and submit to the SEB.

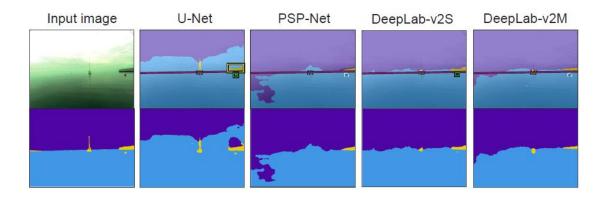
The Next Big Thing on Your List...

- The written exam (see studis for dates)
 - Approx. two hours -- Covers entire course
 - Theoretical as well as analytical assignments (see the lab exercises for examples of analytical parts)
- Oral exam potentially required for low scores (X = ~50%-60%)
 - Need to know all that you got wrong on written exam
 - + ~2 random questions
- If >X% do not have to come to oral
 - Can if you would like to increase/decrease grade by 1 (or fail?)
- Please fill-out the poll at *studis*
 - Constructive suggestions towards improving the course

- Check out similar courses at other Universities:
 - Aachen: https://www.vision.rwth-aachen.de/course/6/
 - Stanford: <u>http://vision.stanford.edu/teaching/cs131_fall1617/schedule.html</u>
 - Illinois: http://slazebni.cs.illinois.edu/spring18/
 - ... many more can be found on the net

• Semantic segmentation

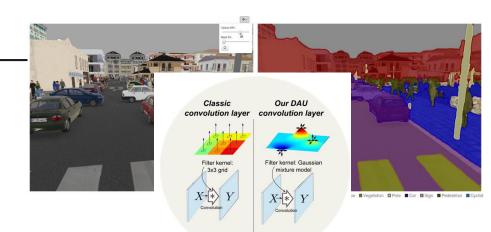
Borja Bovcon, Matej Kristan. WaSR -- A Water Segmentation and Refinement Maritime Obstacle Detection Network, IEEE Transactions on Cybernetics, 2021

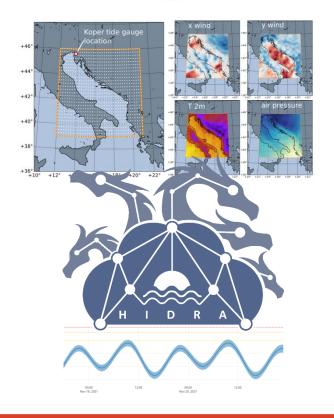


• Improvements of the CNN architectures

Tabernik, Kristan, Leonardis, Spatially adaptive units for deep neural networks, CVPR2018

• Climate time series prediction & reconstruction Žust, Fettich, Kristan, Ličer. HIDRA 1.0 : deep-learning-based ensemble sea level forecasting in the northern Adriatic, GMD2021



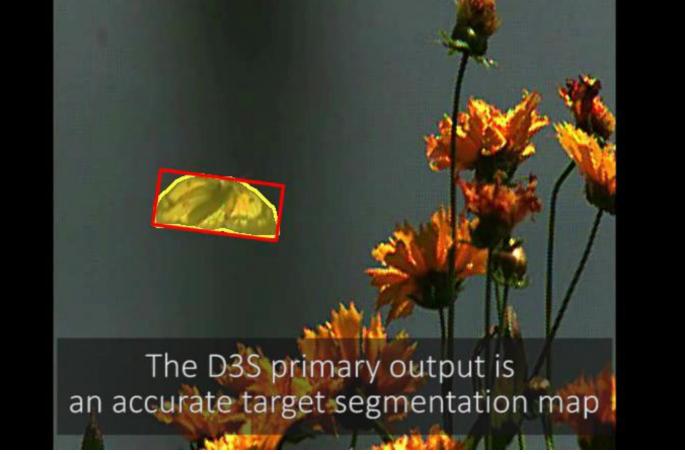


• Object tracking

VOT2020 benchmark

The VOT2020 benchmark addresses short-term, longterm, real-time, RGB, RGBT and RGBD trackers. Results were presented at ECCV2020 VOT workshop.

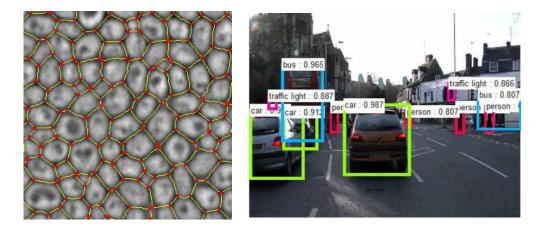
- Fast implementations
- Improvement of existing methods
- Trackers for drones ...



Lukezic, Matas, Kristan, CVPR2020

• Image style transfer (for domain adaptation)

- Object and category detection (e.g., CNN if you're interested)
- Image classification, scene classification
- Machine (industrial) vision

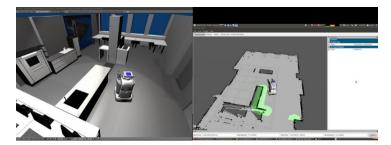


- Look for fun publications at ICCV, ECCV, CVPR if you like, you can study one of these for your thesis.
- Your own ideas welcome!
- Those doing their thesis at Vicos can publish demo videos at the Vicos student project homepage!
- **Caution:** Historically, students either dropped out on a topic under my supervision or did A LOT of work (and hopefully finished with satisfaction)...

Other Computer-vision-oriented courses at FRI

- Bachelor's level:
 - Multimedia Systems (Luka Čehovin, Vicos)
 - Development of Intelligent Systems (Danijel Skočaj, Vicos)

- Master's level
 - Advanced computer vision methods (Matej Kristan, Vicos)
 - Deep learning (Danijel Skočaj, Vicos)
 - Image-based biometry (Peter Peer)
 - Biomedical Signal and image Processing (Franc Jager)



Good luck with the exam(s)!